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A general wave equation for waves 
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A time-dependent extension of the reduced wave equation of Berkhoff is developed 
for the case of waves propagating over a bed consisting of ripples superimposed on 
an otherwise slowly varying mean depth which satisfies the mild-slope assumption. 
The ripples are assumed to have wavelengths on the order of the surface wavelength 
but amplitudes which scale as a small parameter along with the bottom slope. The 
theory is verified by showing that it reduces to the case of plane waves propagating 
over a patch of sinusoidal ripples, which vary in one direction and extend to +a 
in the transverse direction, studied recently by Davies & Heathershaw and Mei. We 
then formulate and use coupled parabolic equations to study propagation over 
patches of arbitrary form in order to study wave reflection. 

1. Introduction 
The problem of reflection of surface waves by patches of large bottom undulations 

has received an increasing amount of attention recently, owing to this mechanism’s 
possible importance in the development of shore-parallel bars. Davies & Heathershaw 
(1984) and Mei (1985) have recently studied the case of reflection from sinusoidal 
topography and have provided analytic treatments which exhibit the mechanism of 
a resonant Bragg reflection at the point where the wavelength of the bottom 
undulation is one half the wavelength of the surface wave. Davies & Heathershaw 
provide a solution to the linear problem which employs a perturbation expansion 
using the ripple amplitude as the small parameter ; reflected waves appear at second 
order as forced solutions. This theory is not valid near the Bragg-scattering condition 
for resonance, and Davies & Heathershaw provide a somewhat artificial correction 
in this region which ensures conservation of energy in the scattered wave field. On 
the other hand, Mei concentrated on the reflection process at or close to the resonance 
condition and obtained evolution equations for the dominant free-wave components. 
The results of both theories agree suitably well with experimental results for reflection 
from a finite patch of sinusoidal ripples. 

Based on the analytic and experimental results, Mei suggests that reflection of 
waves from an initially isolated bar (such as a break-point bar formed at the outer 
edge of the surf zone) may be sufficient to induce the formation of bars further offshore 
of the initial bar, while Heathershaw (1982) has investigated and discussed the initial 
accretion of loose sediment and initiation of extra bars upwave of a limited barfield. 

The analytic results presented to date illustrate the major features to be expected 
when studying reflection from a system of bars. However, they are too limited in scope 
to provide a direct treatment in the case of natural bed forms varying arbitrarily in 
two horizontal directions. For this reason, the present study concentrates on the 
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development of a general wave equation which is applicable to linear surface waves 
in intermediate or shallow water depths. The resulting equation is similar in spirit 
to the reduced wave equation of Berkhoff (1972), but extends the usual mild-slope 
approximation to include rapidly varying, small-amplitude deviations from the 
slowly varying mean depth, which lie outside the scope of Berkhoffs equation. The 
resulting equation is generally applicable both to  the case of resonant scattering by 
an undulating bottom and to thc case of slow, non-resonant scattering by detuned 
undulations or by the slow change in average depth, which is important in the absence 
of strong resonant scattering. In  contrast, the results below indicate that the original 
mild-slope formulation is not generally applicable to the cases of resonant scattering 
to be studied. 

After deriving the general equation in $ 2, we consider the correspondence between 
the present results and those of Mei (1985) and Long (1973) in $3. A simple numerical 
scheme is used to solve the reduced wave equation for the case of reflection over 
one-dimensional topographies, and vomparisons are given between the prediction of 
the present theory and the corresponding results using the mild-slope approximation. 

I n  $4 we apply a splitting method in order to  reduce the elliptic form to two coupled 
parabolic equations for forward- and backscattered waves. The resulting equations 
for amplitude of the forward- and havkward-propagating waves extend the results 
of Mei to  the case of arbitrary topographic variations and include possible diffraction 
effects. 

2. Derivation of the wave equation 
The depth-integrated wave equation for monochromatic, linear waves propagating 

over small-amplitude bed undulations may be formulated following either a variant 
of the Green's formula method of Smith & Sprinks (1975) or Liu (1983), or by using 
the Lagrangian formulation of Kirby (1984). Here the Green's formula approach is 
utilized. 

Let, h'(x) ,  x = (2, y}, denote the total still-water depth, and let 

h' = h(x)-S(x) ; (2.1) 

where h ( x )  is a slowly varying depth satisfying the mild-slope assumption 

S(x) represents rapid undulations of' t,he depth about the mean level, as indicated in 
figure 1.  We consider the problem to be linearized in wave amplitude but retain 
first-order terms in the bed-undulation amplitude. We assume 

Linearizing the free-surface boundary conditions and expanding the bottom boundary 
condition about z = - h, we obtain to O(kS) 

Vk$+$,, = 0 ( - h  < 2 < O ) ,  (2.4) 

A t + & ,  = 0 (2 = O ) ,  (2.5) 

$2 =-vhh'Vh$+V~*(&Vh$) ( z  = - h )  (2.6) 
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FI~URE 1 .  Definition of depth components. 

Equation (2.6) has been given previously by Mei (1985) and in different form by 
Davies & Heathershaw (1984). To leading order (6+0), the solution to (2.4)-(2.6) may 
be expressed as 

(2.7) 

(2.8) 

locally, with w being the fixed angular frequency and k the wavenumber. We then 
use Green’s second identity to extract the propagating component of q5 : 

$(x, z, t )  = f ( x ,  z) $(x, t )  +E non-propagating modes+ O(kS), 

w2 = gk tanh kh 

where f = cosh k(h + z)/cosh kh is a slowly varying function of x, and where 

The integrals are manipulated to obtain finally 

6tt-Vh* CCcg vh 6) + k2CCg)  6 + g f z  I-h vh* (“h 6) 

+ g j: f vg f dz 6+ gf vhf.  vh I-h 6+ d V h f ” h  I-h 6 
h 

+ g s ( f v ~ f ) I - h 6 + 2 g 6 f V h f . V h 6 1 - h  = O ,  (2*10) 

where C = o / k  and Cg = aw/ak. 
The last five terms are proportional to either (vh h)2 or 8vh h, and are thus second 

order in the small parameter. Neglecting them and substituting for f(z = - h )  then 
gives 

6.%-’h’ (“g ‘h 6)+ (wz-  k2CCg) 6+cosh2 kh Vh’(mh6) = O(k6)2. (2.11) 

Equation (2.1 1 )  governs the value of the potential at the free surface for an arbitrary 
wave motion. Neglecting the term in 6 yields a time-dependent form of Berkhoffs 
(1972) equation for the slowly varying bottom alone. 

This completes the derivation using the Green’s identity method. The derivation 
of a nonlinear form of (2.1 1) in the context of the Lagrangian formulation is given 
by Kirby (1986). 
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3. Correspondence to previous results 
I n  order to demonstrate the completeness and generality of the wave equation 

(2.1 l ) ,  we first consider its reduction to  the coupled evolution equations of Mei (1985) 
for resonant Bragg scattering by a finite patch of ripples. We then employ a 
finite-difference form of (2.1 l) ,  after neglecting time dependence, to study the 
one-dimensional (z only) reflection for a range of incident wavelengths, and compare 
our results to the data presented by Davies & Heathershaw (1984). Finally, a 
discussion of some correspondences with the work of Long (1973) is presented. 

3.1. Resonant Bragg scattering 

Consider the particular example, studicd by Davies & Heathershaw (1984) and Mei 
(1985), of waves propagating normally over a ripple patch varying in z and extending 
uniformly to & co in y. Depth h is taken to  be constant, while S is given by 

S = $!I(eiAz+e-iAx) (0 < z < L), 
where 0 < x < L is the range of the ripplc patch, and 

S = O  ( z < O , x > L ) .  

We consider an incident wave 

(3.2) and reflected wave 

where A and B are slowly varying functions of x and t .  The conditions for resonant 

4- = _- ig B ( ~ ,  t )  ei(-kZ-wt) 
2w 

Bragg scattering are satisfied whenthc bottom undulation has a wavelength of one-half 
the surface wavelength, or 

h = 2 k .  (3.3) 
Employing this result, we proceed by assuming that derivatives of A and B are O(k8) 
in comparison to A and B and keep terms only to  O(k8).  Defining 

gk2D 
4w cosh2 kh 

a, = 

and collecting terms of like powers in eiks, we obtain 

A , + ( ' , A ,  = -iQ,B, 

Bt-(IgB,  =-&?,,A, 

(3.4) 

which are a special case of the results of Mei, neglecting mean bottom slope and 
oblique angle of incidence. In the dcrivation of (3.5)-(3.6), we have neglected terms 
which couple A and B but which have rapidly oscillating coefficients, since these terms 
do not contribute to the direct resonance. Solutions of (3.5) and (3.6) in relation to 
the experimental results of Davies & Heathershaw are discussed in detail by Mei. All 
of Mei's subsequent results may be obtained from (2.1 1) following this procedure and 
his assumptions. 

For later use, we define an unsealed frequency-like term 52' according to 

9, = Q'(kD) ,  (3.7) 
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where 52‘ - O( 1) .  52’ will be advantageous in the general case since it is not dependent 
on the geometry of the undulations. (Note that 52‘ may still be a slowly varying 
function of the mean depth.) 

3.2.  One-dimensional reflection from a ripple patch 
We now test the reduced, elliptic form of (2.1 1 )  for the case of waves normally incident 
on a fmite ripple patch. Variations in the y-direction are neglected; the resulting 
problem is equivalent to that studied by Davies & Heathershaw if we restrict 
attention to sinusoidal undulations of constant amplitude and constant mean 
depth h. After setting h = constant, (2.11) reduces to 

52’ is defined by (3.10) 

following (3.7), and where we have neglected time dependence in the wave amplitude. 
For the case of sinusoidal bed oscillations, we may take 

(0 < x < nl), (3.11) 

where 1 = 2n/A is the bed wavelength and n is the number of bed ripples. the 
Bragg-scattering condition corresponds to 2klA = 1.  Equation (3.8) is written in 
finite-difference form, and radiating boundary conditions are applied according to 

S = D sin (Ax) 

$, = -ik($-2$1) 

4, = ik$ 

(xl < 0 ) ,  

(x2 > nl), 

(3.12) 

(3.13) 

where 4 1 -  - e iks  (3.14) 

is the incident wave of unit amplitude. x1 and x2 represent the upwave and downwave 
limits of the computational grid, which may be arbitrarily close to the outer edges 
of the ripple patch since non-propagating modes are not accounted for. The resulting 
tridiagonal matrix is inverted using a double-sweep algorithm. 

We first consider the experimental results of Davies & Heathershaw and compare 
numerical results with the cases 

(i) n = 10, 

(ii) n = 4, 

D / h  = 0.16, 

D / h  = 0.32. 

Computed results for reflection coefficient I R I corresponding to a reflected wave 

$ R -  - Re-ikx (x < 0) (3.15) 

are given by the solid curves in figures 2 and 3 for cases 1 and 2 respectively, in 
comparison to the laboratory data. Solutions were obtained using a grid spacing of 
Ax = 1/20 in order to obtain accurate results at  large 2k/A. The numerical results are 
nearly indistinguishable from the analytic results of Davies & Heathershaw (1984) 
with the exception of small shifts in the positions of the peaks and zeroes of I R I. These 
shifts may be due to the neglect of non-propagating waves at  the ripple-patch edges 
as well as the numerical errors involved in the computation scheme. The results are 
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FIGURE 2. Reflection coefficient for waves normally incident on a sinusoidal patch. Case 1 :  
D / h  = 0.16, n = 10. -, numerical results, present theory; - - -, numerical results, mild-slope 
theory; 0,  laboratory data from Davies & Heathershaw (1984). 
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FIGURE 3. Reflection coefficient for waves normally incident on a sinusoidal patch. Case 2 :  
D / h  = 0.32, n = 4. -, numerical results, present theory; - - -, numerical results, mild-slope 
theory; 0,  laboratory data from Davies & Heathershaw (1984). 



General wave equation for  waves over rippled beds 177 

based on the same information as in Mei’s approach, and compare well with his 
predictions over the range of validity of the theory for near-resonance. 

Also shown in figures 2 and 3 are results obtained using the original mild-slope 
theory alone (dashed lines). To construct these curves, we use the one-dimensional 
form of Berkhoffs equation given by 

(3.16) 

where C, C, and k are determined by the total depth h’(z). I n  figure 2 ,  where waves 
are relatively short compared to the water depth (kh = 0(1 ) ) ,  a marked discrepancy 
is apparent between the results of the present general model and the mild-slope form 
of the model, with the mild-slope form clearly being unable to predict the magnitude 
of the resonant-reflection peak. This result may have been expected since the 
mild-slope equation is derived assuming that the depth must vary slowly over a 
wavelength. However, this is the first documented case of the mild-slope equation 
breaking down on a topography with local slopes less than 0(1), and the results 
indicate the utility of the new extended form of the equation. 

In  figure 3, the results of the mild-slope theory are in closer agreement with the 
results of the present generalized equation. I n  this case, waves are longer with respect 
to  the average water depth, bringing us close to the shallow-water asymptote. It may 
be seen from inspection of (3.8) and (3.16) that  both models are asymptotic to the 
usual linear shallow-water equation, which explains the convergence of the results 
as kh tends to zero. 

Laboratory data from Davies & Heathershaw are included in figures 2 and 3 for 
comparison with the numerical results. Davies and Heathershaw provide indications 
of how much the data a t  low 1 R I is contaminated by reflections a t  the end of the 
wave channel. The reflection effect is especially important in the figure 3 results away 
from the resonant peak, where data and theory are apparently not in agreement. 
Davies & Heathershaw indicate a reflection coefficient of about 0.2 for the beach at 
the end of the wave channel in this case. 

As a second example, we consider the reflection of waves from a bed formed by 
the superposition of two Fourier components : 

6 = D, sinAz+D, sinmAz (0 d z d 27cn/A). 

We consider two cases; one where both Fourier components have an integral number 
of wavelengths in the ripple patch, and the other where the ripple patch terminates 
at a half-wavelength for the second component. These cases differ since, for case one, 
the zeroes of the reflection coefficient for each component would separately coincide 
in Davies & Heathershaw’s analytic treatment; while for the second case the zeroes 
for each component do not coincide. 

For case one, we use the data of figure 3 and set m = 2 so that the second wave 
has half the wavelength of the first. Three situations are plotted in figure 4 :  
D , /h  = 0.32, D 2 / h  = 0 (as in figure 3 ) ;  D , /h  = 0, D,/h  = 0.32 (all variance a t  the 
shorter wavelength) ;and D, /h  = D,/h  = 0.32 (equal bottom-component amplitudes). 
The composite bottom is seen to produce nearly the same zeroes in I R 1, and a peak 
in I RI associated with resonance with each component of the bottom is apparent. 
As in the case of single bottom component, the shifts in positions of the zeroes may 
again be due both to neglect of forced, non-propagating wave modes and to numerical 
error. The two resonance peaks remain separate and clearly distinguishable. 

For the second case, we use n = 4 and m = 9, so that the second component has 
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FIGURE 4. Reflection.from a patch with two Fourier components, 6 = D, sin Ax+ D, sin 2hs, n = 4. 
_ - -  , D,/h = 0.32, D,/h = 0 ;  , D,/h = 0 ,  D,/h = 0.32; -, D,/h  = D,/h = 0.32. 
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FIGURE 5. Reflection from a patch with two Fourier components, 6 = D,  sin Ax+ D, sin (YAx), 
n = 4. - - -, D,/h  = 0.32, D,/h = 0 ;  -.-. D,/h = 0 ,  D,/h = 0.32; -, D,/h  = D,/h = 0.32. 

7; wavelengths in the ripple patch. Curves of I R I for the same three distributions 
of ripple amplitudes as described above are given in figure 5. Now the reflection 
coefficients associated with each component acting separately have different zeroes. 
The two patterns together interact and destroy the zeroes; the resulting curve of I R I 
varies smoothly over the range of 2k l l  considered. The peaks associated with resonant 
scattering from each component are again distinct and strong. 
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FIGURE 6. Reflection from a patch with two Fourier components IS = DJ sin Ax+ D, sin 2Ax, n = 4. 
-, D,/h  = D,/h = 0.32 (as in figure 5). - - -, sum of individual results for D J h  = 0.32, D,/h = 0 
and D, /h  = 0, D,/h = 0.32. 

Figure 6 shows a comparison between the reflection coefficient for the composite 
bottom of figure 4, and an artificially constructed reflection coefficient obtained by 
simply summing the individual reflection coefficients for the two bottom components 
of figure 4 acting separately. Agreement between the actual and artificial reflection 
coefficients is fairly close near the resonance peaks, where one bottom component 
dominates, but they become quite different away from any resonance, indicating a 
significant mutual interaction between all wavelike features away from a dominant 
resonance. 

The strength of resonant reflection from an organized barfield implies that a broad 
spectrum, containing a band of wavelengths which are nearly or exactly resonant with 
the bottom, may experience fairly significant reduction in energy density near the 
resonance wavenumber. Further, the reflected wave field, which may assume the form 
of a fairly narrow spectral band around the resonant wavenumber, may be much 
‘groupier ’ than the incident-wave field. This groupiness may lead to significant forced 
long-wave motions propagating in the offshore direction. These motions would be 
similar in form to the offshore-propagating long wave caused by wave-group pumping 
of the surf zone (studied recently by Symonds & Bowen 1984; and Symonds, Huntley 
& Bowen 1982), but do not require the incident-wave field to be distinctly groupy 
in nature. 

Unfortunately, no laboratory data exists to test these hypotheses; verification of 
the present results and conjectures thus require further independent effort. 

3.3. Scattering by a random bottom; comparison with Long’s (1973) results 
Long (1973) has presented a model for the scattering of surface waves by irregular 
bottom variations, which is based on the perturbation scheme of Hasselmann (1966). 
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Long’s study generalizes the Bragg-scattering problem considered here to the 
problem of interaction between a directional spectrum of random surface waves 
interacting with a directional spectrum of bottom variations. He shows that the 
generalization of the Bragg condition to waves oriented at  any angle to a relevant 
bottom component is given by 

k”(8”) = k(O)-k’(O’), (3.17) 

where k“ is the wavenumber vector of a spectral component of the bottom, 
I k I = I k’ I = k are the magnitudes of the wavenumbers of the two surface-wave 
components at  equal frequency, and 8 and 8’ are the directions of propagation of the 
surface components with respect to a reference direction. The resonance condition 

(3.18) 
gives k“ = Ik”l = 2:k(l-cos(8-8’)):, 

e// = +(e+o’)++n. (3.19) 

In this case, Hasselmann’s general interaction equation specializes to 

- = X JJd2kr 1671 130D-kk,k-12F,(k”).(F(k’)-F(k)), (3.20) 
at k’>O 

which is Long’s equation ( 1 ) .  Here, F(k)  and F(k’)  are the spectral densities of the 
surface waves in the 8 and 8’ directions, and F,(k”) is the spectral density of the 
bottom variations in direction 8” with wavenumber k given by (3.18).  In (3.20), 
D - k r k ”  is given by (Long) 

(3.21) 
D-kkc’k“ - - 6k sinh kh cos kh’ 

Specializing to the case studied in $3.1, we may restrict attention to the case where 

k-k‘ - 

k‘ = - k  

where 

In this case, the transfer coefficient in (3 .20)  reduces to 

k” = 1 = 2k.  

I3wD 1’ = 4k2Q” 

in our notation. Long’s model then predicts that the rate of change of the energy 
density of a single wave component is proportional to the difference between the 
densities of the interacting pair of surface waves. 

Neglecting the spatial dependence of the amplitude components A and B in (3 .5)  
and (3 .6) ,  these equations may be manipulated (together with their complex 
conjugates) to give 

IA 1,“ = -iSZ,(A*B-AB*), (3.22 a)  

I B 1,“ = iQ,(A*B-AB*), (3.22 b )  

which indicates that ( I A 1 2 +  I B I2)t = 0;  (3.23) 

energy is conserved by the interaction (see Mei for a more extensive discussion). In 
order to get equations which are closer in form to Long’s equation, we may 
differentiate (3 .22)  with respect to time again and then use (3.5) and (3.6) to eliminate 
time derivatives from the resulting right-hand sides; we get 

(3.24 a) 

(3.243) 



General wave equation for waves over rippled beds 181 

From this pair we see that the rate of change of the growth rate of the energy density 
is proportional to the differences in energy densities of the interacting components, 
in contrast to the results of Long, where only the growth rate itself is involved. 
Equations (3.24) indicate the possibility of a slow reversal phenomenon, where a 
dominant wave travelling in one direction is gradually replaced by a dominant wave 
travelling in the opposite direction (Mitra & Greenberg 1984). In particular, for an 
initial condition I A 12(0) = A: and I B 12(0) = 0; i.e. a purely progressive wave, (3.24) 

(3.25 a) 
has the solution 1 A 12((t) = :A:( 1 + COS 252, t ) ,  

IB12(t) = ~A:(1-cos2Q0t), (3.25 b)  

indicating a complete transfer of energy from the initial wave to the resonantly forced 
reflected wave, after which the process repeats cyclically. Long's model, on the other 
hand, would indicate a final equilibration of the forward- and backward-travelling 
spectral densities. 

4. Coupled parabolic equations for forward- and back-scattered waves 
We now consider the development of coupled parabolic equations for forward- and 

back-scattered waves, following the results of Radder (1979) and Liu & Tsay (1983). 
The goal is to obtain an extension to the refraction results of Mei (1985) (as in (3.5) 
and (3.6)) to cover cases where 6 varies arbitrarily in x and y, and where y-variations 
in 6 or h may induce sufficiently strong amplitude variations to warrant the 
introduction of diffraction effects. We take x to correspond to a principal propagation 
direction and assume that deviations from this direction are small. Neglecting time 
dependence in the wave amplitude, (2.11) may be written in elliptic form as 

(4.2) 
4052'6 

k .  
p = ccg-- where 

(4.1) may then be written as 

where, to leading order in (kd),  p- l  is given by 

p-l  = (CCg)-l{1+4F) 6+O(k6)2 
Cg 

(4.4) 

Next we denote an operator y2# according to 

The corresponding pseudo-operator y# is obtained by expanding the square root to 
give - 

1 2 52' {( z: ) 2k2CCg k2 Cg 
y+ = k 1+2--6 #+- (CC # ) --- (6#y)v}+O(k6)2. (4.6) 
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6 be expressed as the sum of forward- and backward-propagating waves : 
We now follow a simple scheme for obtaining the coupled parabolic equations. Let 

= $++$-. (4.7) 

$: = iy$++F($+,$-), 6, = -iy$--4$+,4-),  (4.8) 

We then assume the coupled equations : 

where the coupling term F is unknown. Repeated substitution of (4.8) in (4.3) finally 
yields 

(4.9) 
(YP), 
2YP 

F ( $ + , $ - )  = -- ($+ -$-), . -  
which may be expanded to give 

(4.10) 

to leading order in (k6). The coupled equations in expanded form are given by 

We introduce the complex amplitudes A,  B according to 

4- - igBe-iko2 
0 

where k, is a reference wavenumber. (4.11) and (4.12) become 

2ikCCgAx+{2k(k- k,) CCg+i(kCCg),+2wS2‘[2k6-i6,]}A 
4052’ + (CCp AJY -7 (SA,), = { i( kCC,), - 2iwS2‘6,) B e-2iko ,, (4.13) 

2ikCCg B, + { - 2k( k - k,) CC, + i ( kCCg), - 2052’[2k6 + iS,]} B 

(4.14) 

The correspondence between the present equations and the simple results of $3.1, 
for a one-dimensional patch of ripples and normal incidence in water of otherwise 
uniform depth, may be seen by substituting for 6 in (4.13)-(4.14) using (3.11) and 
neglecting all non-resonant interactions. 

4wQ‘ 
- (CC g B Y Y  ) +k (6BY)Y = {i(kCC,),-2i6~SZ’S,}Ae~’~o~. 

The resulting equations are 

C, AX-iS2‘(2kS-i6,)A = -0‘6, Bepzikx, 

C, BX+iS2’(2k6+i6,)B = -Q‘6,AeZikx, 
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FIGURE 7 (u, b ) .  For caption see next page. 
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FIQURE 7. Amplitude contours with respect to incident-wave amplitude ; waves propagating over 
two-dimensional ripple patch. (a) Incident wavefield I A / A ,  1 ; (b) reflected wavefield 1 B/A,  I ; ( c )  
total wavefield. - - -, bottom contours; -, amplitude contours. 

or Cg A ,  = -Q, B 
CgB,  =-SZ,A 

}+rapidly oscillating terms. (4.15a, b )  

(4.15a, b)  are equivalent to  (3.5)-(3.6) after neglecting time dependence and after 
accounting for a 90' phase shift in ripple position wit,h respect t o  x = 0. To recover 
the original form, introduce a phase of e?'" in B and rewrite (4.15). 

Note that the equations developed by Mei neglect diffraction effects as well as the 
coupling between the forward- and backward-propagating waves over the slowly 
varying depth. The present equations include these effects. Further, they reduce to 
a set of equations which are essentially similar to those of Liu & Tsay (1983) when 
S is neglected. 

I n  the following example, (4.13)-(4.14) are discretized according to the Crank- 
Nicolson method. The solution technique is equivalent to that used by Liu & Tsay; 
hence, the details are omitted here. 

We construct a two-dimensional patch of ripples of finite extent in the x- and 
y-directions. Ripples with length 1 are aligned with crests parallel to the y-axis. The 
patch is symmetric about the x-axis and has overall dimensions of nl and 2nl in x 
and y, where n is the number of ripple wavelengths. The topography is given by 
h = constant and 

The computational domain is given by -3  < x/1 < 3 and 0 < y/l < 6. The ripples 
are similar to  those of figure 3, with D / h  = 0.32 and n = 4. Results were computed 
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for the resonant case 2 k l A  = 1 and are plotted along with the bottom contours in 
figure 7 ( a )  (for incident amplitude I A I), 7 ( b )  (for reflected amplitude I B I), and 7 ( c )  
(for the total wavefield). 

The present results were obtained using four iterations of the forward-backward 
calculation, which was sufficient to provide a reasonable degree of convergence. As 
in $3, a grid spacing of Ax = Ay = $1 was used. Unfortunately, no laboratory data 
exists to test the two-dimensional model; verification was limited to checking that 
results of the coupled parabolic model are equivalent to results using the elliptic model 
for the one-dimensional cases studied in $3. 

The use of a parabolic approximation implies that wave propagation should be 
confined to some narrow band around the principal (x-)direction. This indicates that 
the amplitude contours which have spread far to the side of the ripple patch (as 
apparent in figures 7 (b, c ) )  involve some error. However, the major portion of the 
backscatter in this example is directly upwave along the x-axis; the spread of 
reflected-wave energy to the side is relatively unimportant. An indication of the 
amount of error in placement of amplitude contours due to over-constraint of lateral 
spread of energy may be obtained from Dalrymple, Kirby & Hwang (1984), who 
tested the parabolic equation in the context of diffraction by a semi-infinite 
breakwater. 

5. Conclusions 
This study has provided a general wave equation for linear surface waves in 

intermediate depth, which extends the range of applicability of the mild-slope 
approximation by providing for relatively rapid undulations in depth. Deviations 
from the mean, slowly varying depth must be small in relative amplitude but may 
be of any arbitrary form. The present results thus extend the previous analytic results 
for sinusoidal topography, and make i t  possible to handle directly physically realistic, 
one- or two-dimensional bed forms. 

Although the results of $3 show that the small-amplitude theory is able to predict 
physically realistic results for wave reflection over bed undulations with amplitudes 
as large as 32 % of the mean depth, it is expected that some limitation to the present 
theory would occur with increasingly higher bed forms. The limitations of the 
small-amplitude theory are being investigated using a boundary-integral approach 
for bottom undulations of arbitrary height ; results of this analysis will be reported 
separately. 

This work was supported in part by the Office of Naval Research, Coastal Sciences 
Program. The author is grateful to Professor R. A. Dalrymple for several 
conversations. 
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